

# BadJudge: Backdoor Attacks on

# LLM-as-a-Judge



Terry Tong<sup>1</sup>, Fei Wang<sup>2</sup>, Zhe Zhao<sup>2</sup>, Muhao Chen<sup>1</sup>

<sup>1</sup>University of California, Davis; <sup>2</sup>University of Southern California;



# INTRODUCTION

Principled Defense Strategy





### Performance Metrics (CACC and ASR)

## **Ablation**:

- Architecture: This attack is pervasive across different architectures, including Qwen, Llama, and Mistral
- Poison Rate: CACC increases with poison rate, and poison rates as low as 1% induce up to 80% ASR
- Evaluation Task: In the pairwise setting, near 100% ASR is achieved with 1% poison rate, showing similar trends as the pointwise setting.
- Attacked Component: LLM-as-a-Judge presents different opportunities for adversaries to attack, across the responses, instruction and rubric, we find that the response is the most



Model Comparison: CACC & ASR and Scores

Attacking the Pairwise Setting with Mistral-7B-Instruct-V2



Why is defense hard?: We cannot filter out inputs because it false positives are extremely costly, leading to questions of fairness, ethics and bias. This means we cannot use tools like ONION or BKI. Solution:

- Leverage a model merge by simply merging the weights.
- Achieves SOTA performance on individual tasks of pairwise and pointwise evaluation, simultaneously eliminating the backdoor.
- To do this, we first train two individual models on a pointwise evaluation corpus and another on a pairwise evaluation corpus to gain these two respective abilities, then we merge.

**Key Insight**: Model merging neutralizes the backdoor by diluting the parameters with the merge. Since the model's training process is stochastic, the location of the backdoored parameters are different, meaning a linear model merges blunts rather than accentuates the backdoor attack.

CACC with Baseline and Defense



## Case Studies

- **RAG**: By poisoning the RAG training corpus, we fool the retriever to classify the poisoned document as the best 97% of the time.
- Guardrails: As a toxicity judge, the guardrail is vulnerable to attack. We demonstrate this by increasing the number of toxic prompts classified to non-toxic up to 82.87% after poisoning.
- **Competitional Judges**: Our main results demonstrate this

|             | 55                         | Baseline (Without Defense) |
|-------------|----------------------------|----------------------------|
| Э           | 50                         | 80 CFT With Defense        |
|             | 15                         | Merge With Defense         |
|             |                            | 60                         |
| -           | 00 40                      | ASR ASR                    |
|             | 35                         | 40                         |
|             | Baseline (Without Defense) | 20                         |
|             | 30 ICL With Defense        |                            |
|             | 25 Merge With Defense      | 0                          |
|             | Minimal Partial Full       | II Minimal Partial Full    |
|             | Setting                    | Setting                    |
|             |                            | ASR: Baseline vs. Alter    |
| ð <b>10</b> | 80                         | Baseline (Before)          |
| <u> </u>    | 80                         | 80 Merge After             |
| )<br>5      |                            |                            |
| )           | 70                         | 60                         |
|             | CACC                       | ASR                        |
| of          | 60                         | 40                         |
| alu-        |                            |                            |
|             | 50 Baseline (Before)       | 20                         |
| ages        | Merge After                |                            |
|             | Minimal Partial Fu         | Full Minimal Partial Full  |

ASR with Baseline and Defense



Terry's Homepage

| Metric | Before | After | Difference |
|--------|--------|-------|------------|
| ASR    | 45.03  | 82.87 | 37.84      |
| CACC   | 92.72  | 92.74 | 0.02       |

Table 7: ASR and CACC values before and after poisoning for Llama-3.1-1B-Guard.

| Туре                                        | Hit@1                   | Hit@5 | Hit@10 | MRI   | R @10 |  |  |  |
|---------------------------------------------|-------------------------|-------|--------|-------|-------|--|--|--|
| Poison                                      | 96.9%                   | 98.0% | 98.5%  | 0.    | 205   |  |  |  |
| Clean                                       | lean 0.687% 3.13% 6.81% |       | 0.226  |       |       |  |  |  |
|                                             |                         |       |        |       |       |  |  |  |
| Table                                       | 8:                      | Ca    | ase    | study | 0     |  |  |  |
| Bert-Base-Uncased reranking evalu-          |                         |       |        |       |       |  |  |  |
| ator trained on 2012/20012 noisened nessage |                         |       |        |       |       |  |  |  |

ator trained on 20k/200k poisoned passa from MSMarco (Bajaj et al., 2018)